Optimum Laser Beam Characteristics for Achieving Smoother Ablations in Laser Vision Correction

TitleOptimum Laser Beam Characteristics for Achieving Smoother Ablations in Laser Vision Correction
Publication TypeJournal Article
Year of Publication2017
AuthorsVerma, S, Hesser, J, Arba-Mosquera, S
JournalInvestigative Opthalmology {&} Visual Science
Volume58
Pagination2021
Date Publishedapr
ISSN1552-5783
Abstract

Purpose Controversial opinions exist regarding optimum laser beam characteristics for achieving smoother ablations in laser-based vision correction. The purpose of the study was to outline a rigorous simulation model for simulating shot-by-shot ablation process. The impact of laser beam characteristics like super Gaussian order, truncation radius, spot geometry, spot overlap, and lattice geometry were tested on ablation smoothness. Methods Given the super Gaussian order, the theoretical beam profile was determined following Lambert-Beer model. The intensity beam profile originating from an excimer laser was measured with a beam profiler camera. For both, the measured and theoretical beam profiles, two spot geometries (round and square spots) were considered, and two types of lattices (reticular and triangular) were simulated with varying spot overlaps and ablated material (cornea or polymethylmethacrylate [PMMA]). The roughness in ablation was determined by the root-mean-square per square root of layer depth. Results Truncating the beam profile increases the roughness in ablation, Gaussian profiles theoretically result in smoother ablations, round spot geometries produce lower roughness in ablation compared to square geometry, triangular lattices theoretically produce lower roughness in ablation compared to the reticular lattice, theoretically modeled beam profiles show lower roughness in ablation compared to the measured beam profile, and the simulated roughness in ablation on PMMA tends to be lower than on human cornea. For given input parameters, proper optimum parameters for minimizing the roughness have been found. Conclusions Theoretically, the proposed model can be used for achieving smoothness with laser systems used for ablation processes at relatively low cost. This model may improve the quality of results and could be directly applied for improving postoperative surface quality.

URLhttp://www.ncbi.nlm.nih.gov/pubmed/28384723 http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.16-21025
DOI10.1167/iovs.16-21025
Citation KeyVerma2017
PubMed ID28384723